geladen (geladen) wrote,
geladen
geladen

Category:

разбросало кучу #4.1 (школота)

УВАГА: Если ты, дорогой читатель, понимаешь что такое нормальное распределение, распределение Рэлея, среднеквадратическое отклонение и доверительный интервал, этот пост тебе, наверное, можно безо всякого ущерба пропустить. Если ты хорошо понимаешь, что это такое, во избежание ущерба читать лучше не надо.

Хорошие новости: разброс пробоин в мишени описывается очень простыми математическими моделями. Разброс по вертикали и по горизонтали независимы друг от друга, и каждый описывается т.н. нормальным распределением, гауссианой.

Те, кто вдруг возжаждал вспомнить формулы и Учоную Тэорию, могут запросто потеребить себя за уикипэдию. Для тех же, кто изначально забил или с удовольствием забыл, принципиальная схема гауссианы в профиль выглядит примерно так (уже предвкушаю корчи математиков, при чтении дальнейшего.):


(картинка попячена с википэдии)

Нормальное распределение пробоин задаётся двумя параметрами:
μ (мю) -- средняя точка попаданий
σ (сигма) -- мера, собственно, разброса
Чем выше кривая в некой точке икс, тем больше вероятность, что пуля попадёт куда-то в район икса. Строго говоря, вероятность определяется площадью под графиком. Например, вероятность того, что пуля попадёт в пределах плюс-минус сигмы от СТП, равна ~68.2%. Плюс-минус двух сигм -- 95.4%. Плюс-минус трёх сигм -- 99.7%.

Общая площадь под графиком равна единице; это означает, что вероятность попадания пули в промежуток плюс-минус бесконечность равна 100%. Если сигма увеличивается, график "растягивается", а чтобы площадь оставалась равной единице, пик -- верхняя точка -- снижается, т. е. уменьшается вероятность, что пули лягут близко к центру. Примерно так:


(картинка попячена с википэдии)

Синяя винтовка = группирует хорошо, красная винтовка = группирует ок, жёлтая винтовка = Ругер Мини. Обратите внимание на зелёную винтовку: кучность ок, но сбит прицел -- СТП конкретно не в центре мишени; этот фактор нужно всегда учитывать, и мы к нему ещё вернёмся.

Если бы сферический конь в вакууме, из винтовки не знающей сноса, залепил бы 10 тысяч патронов в мишень, зрелище было бы примерно такое:



Для нашего случая, про нормальное распределение нужно помнить две вещи:

Нормальное распределение очень полезно для компьюторной моделизации происходящего. В деле статистического анализа разброса, некоторые вопросы невозможно решить аналитически (т.е. взял формулу, подставил значения, получил результат). Ответ может быть получен только численными методами. Призвав на помощь сферического коня в вакууме, с винтовкой не знающей сноса (или, как говорим мы, Учоные, СКВАВИНЗС, для друзей -- СКВА), получаем картинки, очень точно отражающие реальность, сэкономив миллионы патронов и миллионы лет на замеры мишенек.

Для тех, кто пожелает употребить свои счётные мощности на благо народного хозяйства (а не на сраные лайки в сраном фейцбучике), в любом языке есть простой способ сгенерировать псевдослучайное число между 0 и 1 с постоянной функцией распределения (т. е. вероятность равномерно разбросана по всему промежутку). Чтобы получить из этого нормальное распределение, СКВА обращается к преобразованию Бокса-Мюллера. Например на перле это выглядит как-то так:
my $COUNT = 1000000;

my $x;
my $y;

my $PI = 4 * atan2(1, 1);

for my $i (1 .. $COUNT) {
    $x = sqrt(-2 * log(1 - rand())) * cos(rand() * 2 * $PI);
    $y = sqrt(-2 * log(1 - rand())) * cos(rand() * 2 * $PI);

    print "$x,$y\n";
}

В деле генерирования случайных чисел, отдельно должен предостеречь от использования Ыкцеля или Либрофис-Калька; в них функция RAND() -- говно.

Нормальное распределение напрямую никак не применимо к собственно анализу разброса по результатам в мишени.

Гауссиана описывает только одно измерение -- горизонталь или вертикаль; для нас же, на двухмерной мишени, в первую очередь интересно насколько пробоины отстоят от СТП.

Специально для ответа на этот вопрос существует распределение Рэлея, о котором будет следующий выпуск нашего альманаха.
Tags: вероятность, возликуй зануда, найдите икс, разбросало кучу
Subscribe

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 22 comments